tg-me.com/ds_interview_lib/370
Last Update:
Почему мы не можем использовать линейную регрессию для задачи классификации?
Основная причина в том, что выход модели линейной регрессии — это непрерывные значения. А в задаче классификации нам нужно получать значения конкретных классов, то есть дискретные значения.
Это обстоятельство вынуждает нас использовать другую функцию потерь. Если в линейной регрессии обычно применяется среднеквадратичная ошибка, то для классификации предпочтительнее использовать например, кросс-энтропию.
Модификацией линейной регрессии под задачу классификации является логистическая регрессия, которая предсказывает логиты и способна давать выходные значения, ограниченные интервалом от 0 до 1. Таким образом, она предсказывает вероятности того, что конкретный объект принадлежит к какому-либо классу.
#машинное_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/ds_interview_lib/370